1 1. LLM: что такое большие языковые модели

1 1. LLM: что такое большие языковые модели

Во-вторых, понимание этого механизма может помочь в разработке более эффективных архитектур для zero-shot и few-shot learning, особенно для низкоресурсных языков. Наконец, это исследование открывает новые перспективы для изучения «мышления» языковых моделей и их способности к абстрактным рассуждениям.  http://www.bitspower.com/support/user/organic-wave "Млрд параметров" в языковой модели — количества обучаемых параметров, которые https://news.mit.edu/topic/artificial-intelligence2   составляют основу её работы. Параметры — это числа, используемые моделью для определения связи между словами, фразами и контекстами в тексте. Пример успешного дообучения языковой модели для задачи преобразования текста в Cypher запрос с использованием базы данных знаний Neo4j можно найти тут [23]. Подобные плагины можно применять тогда, когда необходимо получить доступ к внешним источникам данных, автоматизировать задачи, а также для улучшения пользовательского опыта [7]. После предварительного обучения модель может быть дополнительно настроена под конкретные задачи https://artificial-intelligence.blog.gov.uk   с использованием меньших, размеченных датасетов. Это повышает ее эффективность в специфических приложениях, таких как анализ тональности или ответы на вопросы. В отличие от моделей, обученных с помощью обучения с подкреплением на основе человеческой обратной связи (RLHF), Клод использует генерируемую моделью систему ранжирования в соответствии с "конституционным" подходом к ИИ. Предоставляя открытый доступ к LLaMA и LLaMA 2, компания способствует развитию исследований в области ИИ и создает прецедент ответственного подхода к разработке и применению LLM. Дорожная карта Google для Gemini направлена на переопределение потенциала искусственного интеллекта, сфокусированного на усовершенствовании планирования, запоминания и обработки данных, чтобы расширить его контекстное понимание. Эта архитектура была усовершенствована для включения эффективных механизмов внимания в декодер трансформера, что позволяет моделям эффективно обрабатывать и интерпретировать обширные контекстные данные.

  • В его основе лежат нелинейные и вероятностные функции, с помощью которых модель предсказывает, какое слово может быть следующим, — рассчитывает вероятность для каждого из возможных слов.
  • В первоначальной версии LLaMA было представлено четыре варианта модели с количеством параметров 7, 13, 33 и 65 миллиардов.
  • Токенизация является фундаментальной частью языковой модели, она напоминает мне генеративную грамматику Ноама Хомского.
  • Известно, что сейчас для обучения российских языковых моделей, как правило, используют все доступные источники.

Одну и ту же модель можно использовать и для генерации кода, и для имитации живого диалога или придумывания историй. Первые языковые модели появились еще в 1990-х годах и могли работать только над лексическим переводом, выравниванием порядка слов в предложениях и другими относительно несложными задачами. Работа над полноценными LLM началась в начале 2010-х годов, когда нейронные сети хорошо зарекомендовали себя в работе с изображениями. В настоящее время интерес представляют новые техники управления поведением больших языковых моделей с целью получения желаемого пользователем результата без обновления самих моделей – так называемый «промт инжиниринг». Эта библиотека, использующая различные архитектуры LLM, стала одним из самых быстрорастущих проектов с открытым исходным кодом в этой области. Hugging Face, часто называемый GitHub-ом для больших языковых моделей (LLM), способствует созданию открытой экосистемы для LLM. В его основе лежат нелинейные и вероятностные функции, с помощью которых модель предсказывает, какое слово может быть следующим, — рассчитывает вероятность для каждого из возможных слов. Модели могут подмечать закономерности, которые невооруженным взглядом не увидит даже опытный диагност. Помимо индивидуальной помощи пациентам, большие языковые модели используются в исследованиях болезней и разработке лекарств. Большая языковая модель (Large language model, LLM) — продвинутая вычислительная модель, способная анализировать и генерировать тексты на любую тематику. Она работает по принципу нейронных сетей и может образовывать сложные шаблоны и взаимосвязи между изученными языковыми данными. LLaMA 2, по-прежнему с открытым исходным кодом и бесплатная для исследований и коммерческого использования, развивает наследие LLaMA, предлагая модели с параметрами 7B, 13B и 70B, включая чат LLaMA 2 с поддержкой диалогов. Невозможно говорить о какой-то единой структуре — в разные годы применяли разные подходы.  https://www.giantbomb.com/profile/seo-triumph/about-me/ Первые языковые модели были статистическими, основанными на вероятностном алгоритме цепей Маркова, более поздние имели в своей основе рекуррентные нейронные сети (RNN). Это вид нейронных сетей, предназначенный для обработки последовательных данных. Третье поколение серии GPT расширило возможности обработки естественного языка до беспрецедентного уровня, позволив создавать тексты - от эссе и кодов до поэзии, - [иногда] превосходящие человеческий результат.

Расширение контекста и долговременная память

Обрабатывая информацию, модель запоминает, как строятся предложения в языке, какие слова часто используются вместе и какие темы связаны между собой. «Понятно, что не бывает строго определенных культурных типов, мы все разные, да и вопросы в этом эксперименте специфичные. Но если говорить о том, чтобы натренировать нейросеть, научить ее лучше понимать какие-то культурные особенности человека, то наше исследование может стать полезным инструментом для таких целей. Это шаг в сторону персонализации, о которой сегодня часто говорят разработчики языковых моделей», — объясняет Ксения Клокова. Компании, которые работают с большим объемом текстовых данных, всегда ищут пути автоматизации процессов. К таким организациям относятся банки, страховые компании, IT-компании, PR-агентства. Им нужны программы, которые умеют генерировать контент, анализировать тексты, делать машинный перевод, отвечать на запросы клиентов в чатах. В этой статье мы поговорим об одной из технологий, которая помогает компаниям упростить рутинные задач. Помимо создания текста, LLM могут выполнять различные задачи, такие как перевод, обобщение, анализ данных и ответы на вопросы. Задача дообучения для задачи геренации по тексту SQL была успешно реализована [24] на основе публичных датасетов запросов SQL. Развитие технологий локальных вычислений и повышение эффективности моделей сделает ИИ доступным даже на персональных устройствах, открывая новые сценарии использования. Если модель узкоспециализированная, то и данные для нее берут определенного формата, например научные статьи по конкретной теме или комментарии в интернете. А, например, всем известная ChatGPT обучалась на данных очень разного формата, чтобы стать универсальной. Главная задача языковой модели — «понимать» текст по закономерностям в данных и генерировать осмысленный ответ. Например, для классификации или NER (Named Entity Recognition) — распознавания сущностей в тексте.

LLAMA

Кроме того, повышение способности модели к рассуждениям и ее надежности является центральным фактором для достижения стабильно высокого качества результатов, устраняя текущие ограничения, с которыми сталкивается GPT-4. Будь то интеграция в бизнес или личные эксперименты, понимание уникальных преимуществ и проблем каждой модели является ключом к использованию трансформационного потенциала LLM. Важно понимать, что этот выбор - не просто двоичное решение, а стратегическое соображение, отражающее ценности, цели и операционный контекст компании. Некоторые модели обучаются на коде и могут помогать разработчикам, предлагая автодополнение, обнаружение ошибок и генерацию фрагментов кода.

Будущее языковых моделей

В этом ключе особенно актуальным становится обсуждаемся уже долгое время концепция федерального закона "Цифровой кодекс Российской Федерации", появление которого обещают к середине 2025 года. Между слоями есть связи, которые помогают учитывать данные с предыдущих слоев. Это помогает не потерять важную информацию при прохождении какого-либо слоя. Он приносит возможность дообучения небольшой части параметров модели, с незначительным падение точности, по отношению к полному дообучению. Полное дообучение модели является операцией, требующей большого объема памяти из-за необходимости хнанения градиента ошибки для каждого параметра модели. В настоящее время наиболее используемым оптимизатором для языковых моделей является AdamW [15], суть метода заключается в отдельной регуляризации затухания весов. Следующее поколение моделей будет еще глубже интегрировать различные типы информации. Это откроет новые возможности для применения ИИ в робототехнике, медицине и промышленности. Первая и главная задача разработчиков — собрать качественный датасет для обучения модели.